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I. INTRODUCTION

RRT* works well for static, fully observable environments,
but when the environment is partially observable or changing,
then replanning must be achieved efficiently and accurately.
Our goal is to investigate improvements to RRT for partially-
observable environments by incorporating ideas from other
path-planning domains.

II. BACKGROUND AND RELATED WORKS

A. RRT and Variants

A rapidly-exploring random tree (RRT) is an algorithm that
randomly samples a certain number of nodes in a nonconvex
search space and then builds a tree from the start node to the
goal node along these samples. In order to connect the tree at
each time step, the tree is extended towards either the nearest
node that does not cause a cycle in the tree or a point that lies
on the path between the current node and the nearest node that
is limited by some growth factor.

RRT* expands on the concept of RRT in two ways: it creates
a ball of volume V = γlog(n)/n where γ is a constant and n
is the number of samples taken, and it performs a smoothing
procedure to connect nodes that are not adjacent but can be
connected without the tree intersecting an obstacle. These
improvements allow RRT* to achieve asymptotic optimality
while simultaneously creating a path that can be more easily
traversed due to the removal of zigzagging edges between
proximal nodes in the tree.

B. A* Graph Search and Variants

A* is an informed search algorithm that incorporates the
cost of traversing a node n, g(n), with the cost left to get to
the goal, h(n). The cost to get to the goal, h(n), is approximated
via an admissible heuristic. Seen nodes are traversed based on
a priority queue ordered by f(n) = g(n) + h(n), and a path
from the start to the goal is constructed.

First described by Koenig and Likhachev in the paper
Incremental A* [1], Lifelong Planning A* (LPA*) improves
the performance of A* in a dynamically changing environment
by taking into account neighboring nodes when processing the
current node being traversed. More specifically, every node n
has a predecessor n’ from which it is extended, and the node is
considered locally consistent if g(n) equals rhs(n). The value
rhs(n) is defined as g(n’)+d(n’,n), where d(n’,n) yields the
cost of getting from n’ to n. Nodes are added to a priority

queue for reevaluation when they are locally inconsistent and
keyed by two values: first, min{g(n), rhs(n)} + h(n), and
second, min{g(n), rhs(n)}. If rhs(n) is less than g(n) (locally
overconsistent, the parent n’ is now more cheaply reachable),
g(n) is set to rhs(n), and if rhs(n) is greater than g(n) (locally
underconsistent, the node n is more costly to be reached from
n’ than previously determined), g(n) is set to infinity. After
this, if the node is locally consistent, we pop it from the queue;
otherwise, we update its key and add it back to the queue.
Since updating the g-value of a node may also affect the rhs-
value of the node’s successors, all of the node’s successors
are also reevaluated, leading to a cascading effect as new
obstacles are discovered. LPA* essentially allows only a few
of the nodes to be expanded again every time an obstacle is
encountered rather than all the nodes of the A* graph, which
is more efficient.

D* Lite, also described by Koenig and Likhachev [2], is
an extension of LPA* which adds a couple of significant
optimizations, most notably keying the priority queue for
reevaluating nodes differently. Rather than reordering the
entire queue, the difference in h(n, goal) between before and
after the obstacle was detected is added to every element
since the change in the heuristic of every element in the
reevaluation queue will be lower bounded by this value.
Another optimization is that D* Lite is run from the goal node
to the start node since obstacle detection happens closer to the
robot rather than the goal node, so we preserve the parts of
the tree that are closer to the goal node.

C. RRT x for Partially Observable Environments

RRT x, introduced by Otte and Frazzoli [3], uses a priority
queue to update weights in a similar fashion to D* Lite,
except applied to RRT* rather than A*. In contrast with other
RRT* variants, to tackle partially observable environments
that may dynamically change, RRT x has been shown to be
asymptotically optimal as well as performing both accurately
and quickly.

D. Artificial Potential Fields

Li et al proposed PQ-RRT* in 2020 [4], which builds
on RRT* by slightly expanding the search space for finding
the nearest node, optimizing the rewiring procedure, and,
most importantly, utilizing an artificial potential field to push
selected nodes towards the goal state during tree extension.



Also, a repulsive force emanates from obstacles, which further
improves the path that the tree follows. Random sampling
helps the tree avoid local minima in the field.

III. METHODOLOGY

A. Baseline RRT x

RRT x is the state-of-the-art approach that was utilized as
the baseline since it is both fast in practice and guarantees
asymptotic optimality. RRT x puts all severed nodes into a
priority queue based on their cost and rewires each one of them
back into the tree. The RRT x algorithm is shown in figures
1 through 8. Algorithm 1 shows how the RRT∗-like tree
is constructed, where the shrinkingBallRadius algorithm
keeps guarantees that the algorithm looks at an average of
log(|V |) nodes at each step.

Algorithm 2 shows how points are connected between the
existing tree to a new sampled node, as well as creating the
permanent neighbor sets and running neighbor sets of the
new node. The outgoing permanent neighbors are denoted
by N+

0 , the incoming permanent neighbors are denoted by
N−

0 , the outgoing running neighbors are denoted by N+
r ,

and the incoming running neighbors are denoted by N−
r . The

findParent function in Algorithm 2 finds the most optimal
parent for the new node within the nearby neighbor vertex set.

Algorithm 3 looks for new obstacles and propagates the
changes to its children while also updating the priority queue
with nodes that have inconsistent cost-to-reach-goal,g(v), and
lookahead estimates, lmc(v).

Algorithm 4 essentially just rewires neighbors exactly like
RRT∗ with the exception that the priority queue is also
updated with inconsistent nodes.

Algorithm 5 propagates the inconsistent cost-to-goal infor-
mation caused by obstacles with ϵ-consistency, as long as the
path that vbot has to traverse is affected; this is the essence
of the advantage that RRT x provides since these updates are
fast and effective.

Algorithm 6 ensures that nodes that are added to the orphan
set by new obstacles propagate information about the obstacle
being added to their descendants, keeping the robot away from
obstacles.

Algorithm 7 simply maintains the running neighbors based
on the provided shrinking radius described earlier.

Algorithm 8 adds vertices to the orphan set in order to
propagate obstacle locations later on.

B. FA-RRT*

We propose a few changes to the existing state-of-the-
art solutions for RRT x with FA-RRT* in partially observ-
able environments. Our solution will instead handle obstacle
discovery by first determining some set of tree connections
that must be severed, performing a potential field update on
inconsistent nodes from the priority queue, and rewiring using
the same mechanism as RRT x.

Algorithm 1 RRT x

1: procedure RRT x(obstacles, world)
2: V ← {vgoal}
3: vbot ← vstart
4: while vbot ̸= vgoal do
5: r ← shrinkingBallRadius(|V |)
6: updateObstacles(obstacles)
7: vbot ← updateRobot(vbot)
8: v ← randomNode(world)
9: vnearest ← nearest(v)

10: steer(v, vnearest)
11: if v ∩ obstacles = ∅ then
12: extend(v, r)
13: end if
14: if v ∈ V then
15: rewireNeighbors(v)
16: reduceInconsistency()
17: end if
18: end while
19: end procedure

Algorithm 2 extend
1: procedure EXTEND(v, r)
2: Vnearby ← nearby(v, r)
3: p = findParent(v, Vnear)
4: if p = ∅ then return
5: end if
6: V ← V ∪ {v}
7: assignChildParent(p, v)
8: for all u ∈ Vnear do
9: if path(v, u) ∩ obstacles = ∅ then

10: N+
0 (v)← N+

0 (v) ∪ {u}
11: N−

r (u)← N−
r (u) ∪ {v}

12: end if
13: if path(u, v) ∩ obstacles = ∅ then
14: N−

0 (v)← N−
0 (v) ∪ {u}

15: N+
r (u)← N+

0 (u) ∪ {v}
16: end if
17: end for
18: end procedure

Algorithm 3 updateObstacles
1: procedure UPDATEOBSTACLES(obstacles)
2: if obstaclenew ∈ obstacles then
3: addObstacle(obstaclenew)
4: end if
5: propagateDescendants()
6: updateQ(vbot)
7: reduceInconsistency()
8: end procedure



Algorithm 4 rewireNeighbors
1: procedure REWIRENEIGHBORS(v)
2: if g(v)− lmc(v) > ϵ then
3: cullNeighbors(v, r)
4: for all u ∈ N−(v)− {v.parent} do
5: if lmc(u) > d(u, v) + lmc(v) then
6: lmc(u)← d(u, v) + lmc(v)
7: u.parent = v
8: if g(u)− lmc(u) > ϵ then
9: updateQ(u)

10: end if
11: end if
12: end for
13: end if
14: end procedure

Algorithm 5 reduceInconsistency
1: procedure REDUCEINCONSISTENCY()
2: while size(Q) > 0 and (key(top(Q)) < key(vbot) or

lmc(vbot) ̸= g(vbot) or g(vbot =∞ or vbot ∈ Q) do
3: v ← pop(Q)
4: if g(v)− lmc(v) > ϵ then
5: cullNeighbors(v, r)
6: for all u ∈ N+(v)− Vorphan do
7: if lmc(v) > d(v, u) + lmc(u) then
8: p′ = u
9: end if

10: end for
11: v.parent← p′

12: rewireNeighbors(v)
13: end if
14: g(v)← lmc(v)
15: end while
16: end procedure

Algorithm 6 propagateDescendants
1: procedure PROPAGATEDESCENDANTS(v, r)
2: for all v ∈ Vorphan do
3: Vorphan ← Vorphan ∪ v.children
4: end for
5: for all v ∈ Vorphan do
6: for all u ∈ (N+(v) ∪ v.parent)− Vorphan do
7: g(u)←∞
8: updateQ(u)
9: end for

10: end for
11: for all v ∈ Vorphan do
12: g(v)←∞
13: lmc(v)←∞
14: if v.parent ̸= ∅ then
15: removeParent(v)
16: end if
17: end for
18: Vorphan ← ∅
19: end procedure

Algorithm 7 cullNeighbors
1: procedure CULLNEIGHBORS(v, r)
2: for all u ∈ N+

r (v) do
3: if r < d(v, u) and v.parent ̸= u then
4: N+

r (v)← N+
r (v)− {u}

5: N−
r (u)← N−

r (u)− {v}
6: end if
7: end for
8: end procedure

Algorithm 8 updateQ
1: procedure UPDATEQ(v)
2: if v ∈ Q then
3: key ← (min(g(v), lmc(v)), g(v))
4: updateKey(v, key)
5: end if
6: end procedure

1) Tree-connection Severing: Whenever an obstacle is
found, all nodes that fall within the bounds of the obstacle
can simply be deleted from the tree. For each of these deleted
nodes, maintain a set of the closest ancestors (closer to the
goal than self) that are not within the obstacle. Note that many
deleted nodes may share the same most recent parent outside
of the obstacle. This subset of nodes can also be thought of
as the most-child nodes that both have children which were
affected by the obstacle but they themselves were not deleted
by the obstacle.

Every child (direct and indirect) of any node in this set
should be severed from its parent and added to a free set.
Note that these children are not being deleted, just severed
from the tree. This will result in all children that were broken
by the obstacle being free nodes.

2) Potential Field Update: When the algorithm starts, the
entire environment is initialized with 0 field force in any
direction. Whenever obstacles are detected, the potential field
is updated based on the new obstacles. This field update will
be done in a very similar way to what is done in the potential
field path planning algorithm described above. Then, every

Algorithm 9 addObstacle
1: procedure ADDOBSTACLE(obstaclenew)
2: obstacles← obstacles ∪ obstaclenew
3: for all (v, u) ∈ E : (v, u) ∩ obstacles∅ do
4: d(v, u)←∞
5: if v.parent = u then
6: if v ∈ Q then
7: Q.remove(v)
8: end if
9: Vorphan ← Vorphan ∪ {v}

10: end if
11: end for
12: end procedure



time inconsistency is reduced using the priority queue, the field
is applied to the inconsistent node popped from the queue and
a new node is generated by stepping from the old node’s most
optimal neighbor to the node pushed by the field.

3) Randomized Rewiring Step: After the nodes are pushed
by the potential field update, the tree must be rewired. The
rewiring happens similar to RRT x, where nodes are selected
from the priority queue based on the lowest cost-to-goal or
lookahead estimate. However, since these points have now
been pushed by the potential field, the tree steps towards the
nodes popped from the queue rather than trying to connect
these points directly, as described in the previous subsection.

As in normal RRT, the current robot position will be
occasionally returned with some probability. Note that the
remaining nodes in the free set are not deleted, so they can
still be reused if the robot eventually needs to traverse back
around through those nodes. Algorithms 10 through 13 depict
the new procedures necessary for FA-RRT*.

C. FA-RRT* Pseudocode

Algorithm 10 provides a basis for FA-RRT* and is very
similar to how RRT x is structured other than two key
changes - the updateObstaclesAndField() function replaces
updateObstacles() and reduceInconsistencyWithF ield()
replaces reduceInconsistency().

Algorithm 11 is similar to updateObstacles() other than
how obstacles are used to create the potential field that
reduceInconsistencyWithF ield() uses.

Algorithm 12 creates a field that is the gradient of a Gaus-
sian Filter on obstacle locations. This is then multiplied by an
amount inversely proportional to the fraction of explored space
occupied by discovered obstacles. This constant is denoted as
kpf .

Algorithm 13 uses the created potential field and applies it to
an inconsistent node popped from the priority queue while the
loop condition isn’t satisfied. It then creates a new node that
is stepped toward from the field-updated inconsistent node’s
parent, preserving optimality of the algorithm. This new node
is created and removed from the queue to be used later.

D. Simulation

The simulation used to test the nodes consisted of two
maps. The first map has a narrow opening and a box open
on one side, while the second map is a very cluttered maze-
like environment. The maps are show in the order described
in the results section. These maps were used to show how
inconsistencies need to propagate as well as how FA-RRT*
should avoid dead-ends better.

IV. RESULTS

A. Asymptotic Optimality

Otte and Frazzoli show that RRT x is asymptotically op-
timal since it inherits the cost function and ball parameter
of RRT∗ [3]. Since FA-RRT* performs the same obstacle
handling procedure with the exception that there is a potential

Algorithm 10 FA−RRT ∗

1: procedure RRT x(obstacles, world)
2: V ← {vgoal}
3: vbot ← vstart
4: while vbot ̸= vgoal do
5: r ← shrinkingBallRadius(|V |)
6: field← updateObstaclesAndField(obstacles)
7: vbot ← updateRobot(vbot)
8: v ← randomNode(world)
9: vnearest ← nearest(v)

10: steer(v, vnearest)
11: if v ∩ obstacles = ∅ then
12: extend(v, r)
13: end if
14: if v ∈ V then
15: rewireNeighbors(v)
16: reduceInconsistencyWithF ield()
17: end if
18: end while
19: end procedure

Algorithm 11 updateObstaclesAndField
1: procedure UPDATEOBSTACLESANDFIELD(obstacles)
2: if obstaclenew ∈ obstacles then
3: addObstacle(obstaclenew)
4: end if
5: propagateDescendants()
6: updateQ(vbot)
7: field← createF ield()
8: reduceInconsistencyWithF ield(field)
9: return field

10: end procedure

Algorithm 12 createField
1: procedure CREATEFIELD()
2: for all x, y ∈ world do
3: if x, y ∈ obstacle then
4: obstacleMask[x, y]← 1
5: end if
6: end for
7: blur ← GaussianFilter(obstacleMask, blurSigma)
8: dx, dy = gradient(blur)
9: for all x, y ∈ world do

10: potentialF ield[x, y, 0]+ = kpf ∗ dx
11: potentialF ield[x, y, 1]+ = kpf ∗ dy
12: end for
13: return potentialF ield
14: end procedure



Algorithm 13 reduceInconsistencyWithField
1: procedure REDUCEINCONSISTENCYWITHFIELD(field)
2: while size(Q) > 0 and (key(top(Q)) < key(vbot) or

lmc(vbot) ̸= g(vbot) or g(vbot =∞ or vbot ∈ Q) do
3: v ← pop(Q)
4: vfield ← applyF ield(v, field)
5: if g(v)− lmc(v) > ϵ then
6: cullNeighbors(v, r)
7: for all u ∈ N+(vfield)− Vorphan do
8: if lmc(v) > d(v, u) + lmc(u) then
9: p′ = u

10: end if
11: end for
12: vnew ← steer(p′, vfield)
13: vnew.parent← p′

14: rewireNeighbors(vnew)
15: end if
16: g(v)← lmc(v)
17: end while
18: end procedure

field applied, we only need to make sure that the potential field
updates and assoicated changes do not affect the optimality.

The potential field stays constant in size based on the size
of the overall world, which, in a fixed map, is O(1) in runtime
and O(A) in memory, where A is the area of the world. The
potential field update only occurs on nodes being popped from
the priority queue that are inconsistent, which is an O(1)
runtime update each time a node is popped. Finally, since the
robot is stepping from the inconsistent node’s parent towards
the field-updated inconsistent node, we ensure that the node
stays within a certain radius of the parent and does not break
the d-ball optimality. Thus, the FA-RRT* algorithm inherits
Θ(nlogn) runtime from RRT x, where n is the number of
vertices in the tree.

B. Information Transfer Time

Just like how there is an upper bound to how much a node
can be moved to preserve asymptotic optimality, there is a
lower bound to the reduction in information transfer time that
this implementation of a potential field causes, analytically
showing that there is a range in which the improvement lies.
At any given point, the potential field affects this point by
product of the gradient of a 2D multivariate Gaussian and the
inverse of the fraction of area in the observed world occupied
by obstacles. The Gaussian gradient term ensures that there is
a smooth potential field; however, this field may be two strong
or weak given limitations of the environment, not providing a
concrete decrease in information transfer time.

Since the factor representing the area that the the obstacles
are occupying in the world is included, there is always an ν-
improvement in obstacle avoidance, allowing for information
about the goal state to be transferred more quickly than RRT x.
Just as an ϵ-change in the path due to obstacles is necessary
for RRT x to provide an improvement in information transfer

time based on inconsistency, a ν-change in the dynamically
detected proportion of the observed world that is occupied by
obstacles is required for there to be a significant improvement
in FA − RRT over RRT x in terms of information transfer
time.

C. Evaluation - Baseline:RRTx

Path length: 161
Timesteps: 61

Path length: 392
Timesteps: 144



D. Evaluation - Variation:FA-RRT*

Path length: 216
Timesteps: 84

Path length: 109
Timesteps: 45

V. DISCUSSION

In general, the queue allowed changes to propagate ef-
ficiently in FA-RRT* similar to RRT x. The runtime of
O(nlogn) was also preserved, which is a novel addition for

using potential fields in conjunction with RRT*. We also
showed that decrease in information transfer time has a lower
bound with our approach.

In practice, the path length and timesteps required to reach
the goal were longer for FA-RRT* in some cases and shorter
in others, indicating that actual convergence time was not
too different. For the second map in particular, FA-RRT*
showed how it can perform significantly better in cluttered
environments. This is because RRT x is somewhat greedy in
the way it is always finding the shortest distance to the path,
whereas FA-RRT* encodes more information about obstacles
occluding the path, particularly dead-ends. The path generated
by FA-RRT* is more characteristic of what real-life dynamics
of a robot might follow, which makes it more applicable in
reality.

A. Limitations

Our study was limited by the quantity and quality of maps
simulated since the algorithm needs to generalize well to
several maps to prove its practicality. Also, using actual robot
dynamics would allow us to show that FA-RRT* is indeed
more representative of real robot motion.
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