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ABSTRACT
Deaf children born to hearing parents lack continuous access to
language, leading to weaker working memory compared to hearing
children and deaf children born to Deaf parents. CopyCat is a game
where children communicate with the computer via American Sign
Language (ASL), and it has been shown to improve language skills
and working memory. Previously, CopyCat depended on unscalable
hardware such as custom gloves for sign verification, but modern
4K cameras and pose estimators present new opportunities. Before
re-creating the CopyCat game for deaf children using off-the-shelf
hardware, we evaluate whether current ASL recognition is suffi-
cient. Using Hidden Markov Models (HMMs), user independent
word accuracies were 90.6%, 90.5%, and 90.4% for AlphaPose, Kinect,
and MediaPipe, respectively. Transformers, a state-of-the-art model
in natural language processing, performed 17.0% worse on average.
Given these results, we believe our current HMM-based recognizer
can be successfully adapted to verify children’s signing while play-
ing CopyCat.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Accessibility technologies; • Ap-
plied computing → Computer-managed instruction; • Com-
puting methodologies → Machine learning; Feature selec-
tion.
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1 INTRODUCTION
Over 95% of deaf children are born to hearing parents who do not
know American Sign Language (ASL) or have very low levels of
proficiency [23]. Unlike hearing children of speaking parents or
deaf children of signing parents, these children often lack adequate
access to language at home, which is necessary for developing
linguistic skills. Many of these deaf children only receive limited
exposure to ASL from signing at school or existing ASL games that
focus on language comprehension rather than phrase generation [1,
2, 31]. If left untreated, a lack of exposure to any language, including
sign language, can lead to significantly weaker working memory
[21]. These effects are especially consequential during the critical
period of language development, which is between the ages of two
and five [1, 24]. As a result, many pre-lingually deafened children
can only repeat one or two signs in a row compared to four to six
signs for children with deaf parents. This deficiency of short-term
memory and other language skills can lead to Language Deprivation
Syndrome (LDS), a conditionwith poor lifelong outcomes, including
a 2-7x increase in mental health problems [3], 50% unemployment
rate [25], higher rates of physical and sexual abuse [26], and a 3-30x
increase in suicide rates [27].

Children who express themselves in ASL can significantly in-
crease their short term memory [28], reducing the risk of LDS. We
are developing CopyCat, an interactive and entertaining game that

https://doi.org/10.1145/3411763.3451523
https://doi.org/10.1145/3411763.3451523
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Figure 1: CopyCat game screen. Children tell the hero Iris
where the monster is hiding (e.g., SPIDER IN BLUE BOX)

Figure 2: Six students playing CopyCat improved language
skills much more quickly than six students attending stan-
dard classroom instruction

displays potential for helping deaf children with short term lan-
guage memory acquisition. The game presents the child with a
scene and prompts them to describe it to the mascot of the game us-
ing ASL (Figure 1). The game then uses an ASL recognizer to decide
if the description is correct and, if so, allows the child to advance
to the next scene. As a result, the game’s effectiveness depends
heavily on the accuracy with which it recognizes sentences as cor-
rect or incorrect. To test the effects of the game, previous studies
purposefully tested vocabulary not in CopyCat to help differentiate
general memory skill acquisition versus learning the game. They
found that the game significantly increases 2 a child’s score on
three crucial measures of working memory—language generation,
reception, and sentence repetition. We hope that adapting CopyCat
to off-the-shelf hardware will provide a valuable tool for educators
to help improve children’s language skills.

Until now, CopyCat has relied on expensive and unscalable hard-
ware such as custom gloves, accelerometers, and kiosks to achieve
sign language recognition accuracy sufficient enough to verify the
children’s signing. As a result of these high costs, the low resolu-
tion of previous cameras, and lack of pose estimators, CopyCat was
inaccessible to most. However, with the advent of pose estimation
systems such as AlphaPose, Azure Kinect, and Google MediaPipe,

along with improvements in camera resolution through devices
such as the Azure Kinect and Android tablets, the goal of deploying
CopyCat on off-the-shelf systems has now become viable.

1.1 Contributions
To this end, we make several contributions which bring us closer
to deploying CopyCat publicly:

(1) We are releasing an ASL recognition toolkit 1 incorporating
Hidden Markov Model (HMM) and Transformer recogni-
tion systems. We have compared HMM performance with
Transformers—current state-of-the-art technology in sign
language translation—and find that HMMs outperformTrans-
formers by over 13.1% on word accuracy.

(2) We compare three pose estimators—AlphaPose, Azure Kinect,
and Google MediaPipe—for ASL recognition performance
(see Figure 3). We found that all pose estimators achieve
similar results, suggesting CopyCat may be scalable to off-
the-shelf cameras.

(3) We are releasing a dataset 2 of features derived from 3914
videos collected from eight adults using the Azure Kinect.
This dataset was used for evaluation throughout this paper.

2 PAST WORK
Recently, there has been significant interest in the recognition and
translation of sign language using RGB cameras alone [5, 6, 8, 13,
14]. Yin et al. [30] showed state-of-the-art translation of German
Sign Language. By jointly training a spatial-temporal multi-cue
(STMC) network to generate glosses from videos and a transformer
to generate translations from glosses, they obtained a Word Er-
ror Rate (WER) of 21.0% on the RWTH-PHOENIX-Weather-2014T
(PHOENIX14T) dataset, which consists of low resolution videos
of signed weather reports. Grobel et al. [12] demonstrated, at the
time, state-of-the-art recognition of isolated signs using HMMs. By
using multi-colored gloves to distinguish the parts of the hand, they
extracted the location of the fingers, palm, and back of the hand.
Using HMMs, they obtained a user-dependent accuracy rate of up
to 91.1% among 262 isolated signs. However, user-independent ac-
curacy was 47.6% and 56.2% for the two users in the dataset. Koller
et al. [18] demonstrated the use of expectation maximization by
integrating convolutional neural networks (CNNs) with HMMs to
create a robust pose-independent hand shape classifier. This model,
when trained on a 1-Million-Hands dataset, reduced error rates
in a continuous sign language recognition system from 57.3% to
47.1% on the RWTH-PHOENIX-Weather dataset, demonstrating the
generalizability of the model. Camgöz et al. [4] also demonstrated
translation of German Sign Language. Using a novel transformer-
based architecture that leverages Connectionist Temporal Clas-
sification (CTC) loss, they demonstrated translation at a WER of
24.5% also on the RWTH-PHOENIX-Weather-2014T (PHOENIX14T)
dataset. Finally, Ko et al. [17] showed Sign Language Translation
on Korean Sign Language by combining Openpose (for human pose
estimation) with an encoder-decoder GRU model. They achieved a
sentence level accuracy of 55.3% on their dataset.

1https://github.com/Accessible-Technology-in-Sign/ASLRT
2https://github.com/Accessible-Technology-in-Sign/copycat-data-chi

https://github.com/Accessible-Technology-in-Sign/ASLRT
https://github.com/Accessible-Technology-in-Sign/copycat-data-chi
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Figure 3: Pose estimation with AlphaPose (left, sign "above"), Azure Kinect (middle, sign "in"), and MediaPipe (right, sign
"alligator") showing difficult signs

Weaver et al. [28] introduced the first iteration of CopyCat. This
iteration of the game entailed a quest by the main character to
collect items to remedy a problem. Children instruct the main char-
acter via sign language, which was verified by an automatic com-
puter sign language recognizer. To quantify the impact of the game,
they conducted a study at a local school of the deaf and reported
significant improvements in language reception, generation, and
sentence repetition abilities—critical measures of working memory.
The study was composed of 12 participants, aged between 6 and 11.
They asked participants at both the beginning and end of the study
to configure plastic toys based on signed instruction (reception),
express an event depicted in stop-motion animation (generation),
and repeat a signed phrase (sentence repetition). The students who
played CopyCat improved their scores on reception, generation,
and sentence repetition measures by 70.8%, 130.0%, and 51.4% as
compared to 12.5%, 33.3%, and 9.9%, respectively, for learners who
followed the normal classroom curriculum. (Figure 2). Our iteration
of the game improves upon the story line and design elements while
also retaining interactions and methodology.

Brashear et al. [2] initiated efforts towards building a sign lan-
guage recognition for CopyCat. They released two datasets—vision
and accelerometer—and demonstrated how HMMs can be used to
recognize American Sign Language. Their vision-based dataset con-
sisted of videos from a camera mounted on a cap, giving them a
direct view of the signing. On the other hand, their accelerometer-
based dataset consisted of time series data from two accelerometers
embedded into wearable gloves. Their models achieved 52.4% and
65.9% user independent sentence accuracy on the vision and ac-
celerometer dataset respectively. Unfortunately, the system’s depen-
dence on accelerometer data from expensive custom gloves (Figure
4) made it infeasible for widespread deployment.

To move towards cheaper and ubiquitous equipment, Zafrulla et
al. collected a dataset with over one thousand ASL phrases collected
using Kinect and demonstrated recognition using HMMs [31]. They
also compared recognition on data collected while standing ver-
sus sitting. Building upon the work done by Brashear et al., they
used HMMs along with features including the shape, velocity, and
acceleration of the user’s hands. Their models achieved 36.2% and
36.3% user independent sentence accuracy on data collected while
standing and sitting respectively.

3 METHODOLOGY
In this iteration of the CopyCat game, we have revamped game
design elements, story line, calibration system, data collection, fea-
ture extraction, and sign language recognition. In this section, we
detail these changes and also elaborate upon our machine learning
pipeline for our 3 different human pose recognition models.

3.1 CopyCat Improvements
Calibration of the distance between the signer and the camera is
integral to CopyCat as it can greatly reduce variability between
users. The original calibration system standardizes the distance
between the signer and the camera by using the front view of the
chair to guide the positioning of the CopyCat chair (Figure 5a). We
improved upon this calibration system by adding a side view of the
chair and re-designing the user experience (Figure 5b).

Addition of side view:We performed two user studies to quan-
tify the impact of adding a side view. The first user study compared
the ease of use and efficiency of calibration using only a front view
with using both views. Nine adults participated in our study, five
of whom have no experience with CopyCat’s calibration system.
On average, the two-view calibration system decreased the time
required to calibrate by 63% and decreased the NASA-TLX score
by 27%, showing that the two-view system is faster and easier to
use. The second user study determined the accuracy of two-view
chair calibration and found that using both views created a highly
accurate calibration with a low average difference from desired to
actual position of 2.4/16 inches. Since using both views created a
faster, easier-to-use, and accurate calibration system, we decided
to integrate both views into the CopyCat calibration system.

Re-designing user experience:We re-designed the user inter-
face by leveraging depth features from Kinect Depth Camera SDK’s
K4AViewer Tool, as depicted in Figure 5b. Specifically, we used
the x, y, and z coordinates provided by the Azure Kinect SDK to
display an outline of the chair (Figure 5c). Using these coordinates,
we incorporated the outline of the chair into the calibration sys-
tem to determine when the chair is correctly calibrated (Figure 5b)
[10, 15]. These outlines turn green if the values of each of the depth
coordinates of points A, B, and C (Figure 5c) are located within a
set range, signaling the success of the task to the user.
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Figure 4: Originally, CopyCat used specially-designed kiosk (left) and custom sensor gloves (center) with embedded accelerom-
eters (right) to achieve sufficient recognition accuracy for gameplay.

3.2 Data Collection
The 4K RGBD dataset used in this study was collected using the
Azure Kinect from 8 adults at Georgia Tech with little experience
with ASL. Adult novice signers were chosen for multiple reasons.
Firstly, the target population of CopyCat—deaf children born to
hearing parents—are disfluent and slow, much like novice signers.
Additionally, adult novice signers are widely available since anyone
familiar with the phrases can record. In comparison, we have a
limited pool of deaf children since they are only available through
local institutions. We plan on using them to test the effectiveness
of the final game. In total, 3914 videos were recorded. Each user
recorded up to ten sets of a standardized set of 58 phrases. Each
phrase consisted of three to five words each and followed the struc-
ture (A)NP(A)N, where A represents adjectives, N represents nouns,
and P represents prepositions. All recording sessions were super-
vised by a second member with full familiarity with the phrase
set. The files generated were processed using our pose estimation
systems to determine the coordinates of various key points on the
user’s hands, upper body, and face.

3.3 Feature Extraction
The v1.3.0 Azure Kinect SDK leverages 4K RGB videos and depth
data to extract the absolute 3D location of over 32 joints [7], result-
ing in a total of 96 features. Unlike Kinect, both the Halpe Full-Body
136 AlphaPose model and MediaPipe v0.8.2 extract the correspond-
ing 2D points using only the 4K RGB videos [9, 19, 20, 29]. When vi-
sualizing the features with Kinect, we noticed that hand landmarks
with signs "in" and "above" were difficult to distinguish between.
Since both signs are performed with hands close together near the
chest level, the pose estimator was inconsistent when it came to
extracting hands that were occluded (see Figure 3). In some videos,
Kinect did not extract hand features for the occluded hand, and
other times would extract the wrong location of the occluded hand.
Furthermore, the Kinect pose estimator does not respond rapidly
to fast movements, with delays between the video and extracted
features present. In the case of AlphaPose, we noticed that when ex-
tracting features for signs like "alligator" and "above" where one or
both hands are on the horizontal plane, not all hand features (finger
joints for example) get identified (see Figure 3). For signs like "in"
where one hand is directly behind the other with respect to the cam-
era, AlphaPose does not extract hand features for the occluded hand
for a few frames. This combined with the previous problem leads to

confusion in differentiating "above" from "in". Overall, MediaPipe
provided the worst feature location estimates for signs where the
hands must be close together due to occlusion of one of the hands.
Some examples of these signs include "alligator", "above", "in", and
"below", such as the one shown in Figure 3. The absolute locations
from each respective computer vision framework were then used
to generate four additional types of features. Firstly, delta features
were calculated using the change in location between the current
and previous frame. Next, features with respect to the position
of the signer’s nose were calculated using the absolute distance
between the feature and the nose. Additionally, Z-score normalized
features were calculated by subtracting the mean location from the
current location and then dividing by its standard deviation. Finally,
min-max normalized features were calculated by linearly mapping
the 5% quartile to -100 and the 95% quartile to +100. Finally, since
aggregating these features for training and testing resulted in an
excessively long list, we performed feature selection to select the
most predictive features to be used as training and testing data to
feed into the HMMs and Transformers.

3.4 American Sign Language Recognition
HiddenMarkov Models: We hypothesize that HMMs are best

suited for ASL recognition in this setting due to their great perfor-
mance on time series and pattern recognition problems along with
low training data requirements when compared to deep learning
models such as LSTMs and Transformers. HMMs for each word are
trained by first performing a flat initialization and then performing
several iterations of the Baum-Welch re-estimation (shown in al-
gorithm 1). Every 20-25 iterations, the number of mixtures in each
HMM model is also increased. Finally, Viterbi Decoding (shown in
algorithm 2) is used to find the sequence of HMM models which
yields the highest observation likelihood. The number of states used
is varied between 14 and 20 depending on the pose estimator used.
A left-to-right HMM topology with no skip transitions was found
to produce the best results based on extensive experimentation.

Transformers: The Transformer model used by Comgez et al.
[4] for German Sign Language Translation was adapted to Ameri-
can Sign Language Recognition to compare results with HMMs and
establish a baseline. We used PyTorch to implement and Google Co-
lab to train end-to-end transformers which use frameworks above
to extract keypoints and then recognize the resulting sequence data.
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(a) (b) (c)

Figure 5: CopyCat calibrates a commonly available IKEA chair (left) using a graphical interface (center) to make sure the user
is seated in an appropriate position. Points A, B, and C (right) are used determine the location of the chair when calibrating.

Algorithm 1 Baum-Welch Re-estimation
1: X = Features,Y = Label ,T = TotalTimesteps
2: Initialize HMM Parameters θ = (A,B,π ) randomly
3: α(X0) = P[Y0,X0] = P[Y0 |X0]P[X0]
4: β(XT ) = 1
5: while i ≤ iterations do
6: for k = 0 → T do
7: α(Xk ) =

∑
Xk−1 α(Xk−1)P(Xk |Xk−1)P(Yk |Xk )

8: end for
9: for k = N → 0 do
10: β(Xk ) =

∑
Xk+1 β(Xk+1)P(Xk+1 |Xk )P(Yk+1 |Xk+1)

11: end for
12: η(Xk ) = α (Xk )β (Xk )∑

Xk
α (Xk )β (Xk )

13: ϵ(Xk ,Xk+1) = α (Xk )β (Xk+1)P [Xk+1 |Xk ]P [Yk+1 |Xk+1]∑
Xk

α (Xk )β (Xk+1)P [Xk+1 |Xk ]P [Yk+1 |Xk+1]
14: π∗

0 = η(X0)
15: A∗

i j =
∑
k ϵ (Xk=j,Xk−1=i)∑

k η(Xk−1=i)
16: B∗i j =

∑
k η(Xk=i)1Yk=j∑

k η(Xk=i)
17: end while

Rather than using video frames directly, we use these keypoints as
the embeddings for the Transformer. Since keypoints can represent
all relevant information in a smaller feature space than frames, they
allow Transformers to generalize better to our dataset compared to
using frames directly. However, we retain positional embeddings
since they add temporal information to the dataset. The model con-
sists of two encoder and decoder layers, four multi-head attention
layers, and a 2048 dimensional feed forward layer. We initialize
all layers using Xavier initialization and train the model using the
Adam optimizer [16].

4 CURRENT RESULTS
In Table 1a, we compare user adaptive results from HMMs on all
three pose estimation frameworks with results from Transformers.
User adaptive refers to models initialized with a user independent

Algorithm 2 Viterbi Decoding
1: create path matrix viterbi[N ,T ]
2: for s = 1 → N do
3: viterbi[s, 1] = πs ∗ bs (1)
4: backp[s, 1] = 0
5: end for
6: for = 2 → T do
7: for s = 1 → N do
8: viterbi[s, t] = maxviterbi[s ′, t − 1]as ′,sbs (t )
9: backp[s, t] = argmaxviterbi[s ′, t − 1]as ′,sbs (ot )
10: end for
11: end for
12: bestpathprop = maxviterbi[s,T ]
13: bestpathpointer = argmaxviterbi[s,T ]
14: bestpath = path starting at bestpathpointer , follows backp[]

to states back in time

Models HMMs Transformers
AlphaPose 98.3 (95.8) 89.1 (82.4)
Kinect 98.1 (94.9) 94.8 (91.4)
MediaPipe 98.8 (96.8) 97.4 (95.3)

(a) User adaptive

Models HMMs Transformers
AlphaPose 98.5 (96.1) 84.8 (74.8)
Kinect 97.2 (91.6) 81.5 (68.9)
MediaPipe 98.1 (94.5) 91.1 (84.1)

(b) User dependent

Table 1: User adaptive and user dependent word (sentence)
percent accuracy

model and updated with data from a target user [11]. To emulate
this, we combine all data and perform stratified 10-fold Cross Vali-
dation (CV) where test sets are not part of training sets. Word and

Figure 5: CopyCat calibrates a commonly available IKEA chair (left) using a graphical interface (center) to make sure the user
is seated in an appropriate position. Points A, B, and C (right) are used determine the location of the chair when calibrating.

Algorithm 1 Baum-Welch Re-estimation
1: X = Features,Y = Label ,T = TotalTimesteps
2: Initialize HMM Parameters θ = (A,B,π ) randomly
3: α(X0) = P[Y0,X0] = P[Y0 |X0]P[X0]
4: β(XT ) = 1
5: while i ≤ iterations do
6: for k = 0 → T do
7: α(Xk ) =

∑
Xk−1 α(Xk−1)P(Xk |Xk−1)P(Yk |Xk )

8: end for
9: for k = N → 0 do
10: β(Xk ) =

∑
Xk+1 β(Xk+1)P(Xk+1 |Xk )P(Yk+1 |Xk+1)

11: end for
12: η(Xk ) = α (Xk )β (Xk )∑

Xk
α (Xk )β (Xk )

13: ϵ(Xk ,Xk+1) = α (Xk )β (Xk+1)P [Xk+1 |Xk ]P [Yk+1 |Xk+1]∑
Xk

α (Xk )β (Xk+1)P [Xk+1 |Xk ]P [Yk+1 |Xk+1]
14: π∗

0 = η(X0)
15: A∗

i j =
∑
k ϵ (Xk=j,Xk−1=i)∑

k η(Xk−1=i)
16: B∗i j =

∑
k η(Xk=i)1Yk=j∑

k η(Xk=i)
17: end while

Rather than using video frames directly, we use these keypoints as
the embeddings for the Transformer. Since keypoints can represent
all relevant information in a smaller feature space than frames, they
allow Transformers to generalize better to our dataset compared to
using frames directly. However, we retain positional embeddings
since they add temporal information to the dataset. The model con-
sists of two encoder and decoder layers, four multi-head attention
layers, and a 2048 dimensional feed forward layer. We initialize
all layers using Xavier initialization and train the model using the
Adam optimizer [16].

4 CURRENT RESULTS
In Table 1a, we compare user adaptive results from HMMs on all
three pose estimation frameworks with results from Transformers.

Algorithm 2 Viterbi Decoding
1: create path matrix viterbi[N ,T ]
2: for s = 1 → N do
3: viterbi[s, 1] = πs ∗ bs (1)
4: backp[s, 1] = 0
5: end for
6: for = 2 → T do
7: for s = 1 → N do
8: viterbi[s, t] = maxviterbi[s ′, t − 1]as ′,sbs (t )
9: backp[s, t] = argmaxviterbi[s ′, t − 1]as ′,sbs (ot )
10: end for
11: end for
12: bestpathprop = maxviterbi[s,T ]
13: bestpathpointer = argmaxviterbi[s,T ]
14: bestpath = path starting at bestpathpointer , follows backp[]

to states back in time

Models HMMs Transformers
AlphaPose 98.3 (95.8) 89.1 (82.4)
Kinect 98.1 (94.9) 94.8 (91.4)
MediaPipe 98.8 (96.8) 97.4 (95.3)

(a) User adaptive

Models HMMs Transformers
AlphaPose 98.5 (96.1) 84.8 (74.8)
Kinect 97.2 (91.6) 81.5 (68.9)
MediaPipe 98.1 (94.5) 91.1 (84.1)

(b) User dependent

Table 1: User adaptive and user dependent word (sentence)
percent accuracy

User adaptive refers to models initialized with a user independent
model and updated with data from a target user [11]. To emulate
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Participant P1 P2 P3 P4 P5 P6 P7 P8 Average
AlphaPose 83.3 (62.9) 96.8 (88.9) 85.4 (61.9) 91.8 (77.8) 93.8 (77.0) 91.3 (69.4) 84.2 (43.4) 98.8 (85.5) 90.6 (71.9)
Kinect 86.5 (64.4) 94.8 (82.0) 81.3 (49.7) 92.1 (77.0) 91.2 (71.4) 92.6 (77.3) 92.4 (71.4) 93.0 (79.4) 90.5 (71.6)
MediaPipe 79.6 (67.9) 94.7 (82.4) 80.6 (48.3) 98.0 (93.0) 93.6 (78.0) 94.2 (78.3) 73.9 (29.8) 98.9 (96.6) 90.4 (71.7)

Table 2: User independent word (sentence) percent accuracy using HMMs

Participant P1 P2 P3 P4 P5 P6 P7 P8 Average
AlphaPose 65.8 (47.0) 69.3 (50.0) 44.7 (28.7) 57.9 (44.0) 79.8 (67.5) 73.7 (56.0) 61.7 (41.0) 84.6 (74.5) 67.2 (51.1)
Kinect 57.0 (38.4) 88.3 (78.8) 56.6 (40.8) 77.3 (65.2) 80.0 (70.3) 79.8 (65.5) 80.7 (71.1) 85.4 (73.3) 75.7 (62.9)
MediaPipe 71.4 (60.5) 87.8 (79.4) 51.8 (32.8) 85.5 (78.8) 85.0 (75.9) 84.7 (73.9) 65.0 (44.0) 88.9 (81.8) 77.5 (65.9)

Table 3: User independent word (sentence) percent accuracy using Transformers

this, we combine all data and perform stratified 10-fold Cross Vali-
dation (CV) where test sets are not part of training sets. Word and
sentence accuracies were averaged across all folds. On user adaptive
tests, HMMs outperformed Transformers by 9.2%, 3.3%, and 1.4%
word accuracy for AlphaPose, Kinect, and MediaPipe respectively.
In Table 1b, we compare user dependent results from HMMs on
all three pose estimation frameworks with results from Transform-
ers. User dependent refers to models which are trained and tested
on data from the same user [22]. To emulate this, we performed
10-fold CV for each user where test sets were not part of training
sets. Word and sentence accuracies were averaged across all ten
folds and eight users. HMMs again outperformed Transformers by
13.7%, 15.7%, and 7.0% word accuracy for AlphaPose, Kinect, and
MediaPipe respectively. While we expect user dependent rates to
be better than user adaptive rates, the opposite is true here. This
is often an indicator of a small dataset, which is expected at the
current stage of the project. However, we note that Transformers
are especially affected, suggesting that they require more training
data than HMMs to achieve parity. Table 2 shows user independent
results for HMMs while Table 3 shows user independent results for
Transformers. HMMs were again found to outperform Transform-
ers by 23.4%, 14.8%, and 12.9% word accuracy for AlphaPose, Kinect,
and MediaPipe respectively. Since HMMs can leverage the gram-
matical structure of the dataset and perform well on small datasets,
these results are not surprising. However, models trained on Al-
phaPose or MediaPipe data, which only generate features using
RGB videos, produced results similar to models trained on Kinect
data, which uses additional depth data to generate features. Despite
producing a more descriptive feature set, MediaPipe’s processing
speed - about 80 frames per second - was significantly greater than
that of AlphaPose, which processed data at around 5.5 frames per
second. Since most off-the-shelf cameras lack depth information,
the quick processing speed of a 2D pose estimator like MediaPipe
suggests that CopyCat could potentially perform well in real-time
using common video recording devices.

5 FUTUREWORK
Zafrulla et al. [31] demonstrated how verification could also be
used to confirmwhether signed phrases are correct. Switching from
recognition to verification improved their sentence accuracy from
67.0% to 82.0% on the CopyCat children dataset. As noted above,

this dataset consisted of data from customized gloves. This verifica-
tion system was used by Weaver et al. [28] at the deaf residential
school to achieve good educational results. On the CopyCat adult
dataset, Zafrulla et al. achieved 51.0% sentence accuracy. Given that
AlphaPose and HMMs achieve better user independent sentence
accuracy (71.9%), future work will focus on integrating ASL verifi-
cation and collecting data from deaf children.

Our current dataset contains data from only eight adults. Addi-
tional data from a wider variety of signers will help models gener-
alize and reach higher user-independent sentence accuracies. From
the explanation provided in the methodology above, training on
more adult novice subjects, due to their disfluencies and the limited
deaf child population, is a critical step towards transitioning to the
target population: deaf children.
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